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Abstract
Cluster assignments, in particular the deep clustering ones, are often hard to explain, partially because

they depend on all the features of the data in a complicated way, so it is di�cult to determine why a

particular row of data is classi�ed in a particular bucket. This opaqueness makes their predictions not

trustable, as for many predictors based on black boxes. This paper aims to tackle the aforementioned

issues by introducing the design and implementation of ExACT, a new explainable clustering algorithm

based on the induction of decision trees and performing hypercubic approximations of the input feature

space in order to provide output human-interpretable clusters. Furthermore, ExACT is versatile enough

to perform explainable classi�cation and regression as well, as demonstrated in this work, proving to be

a competitive alternative to existing analogous algorithms.
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1. Introduction

Clustering is one of the most fundamental optimisation techniques constituting the heart of

many applications in machine learning (ML) and data mining. However, in the past few years

due to the increasing need for transparency [1, 2] – in particular in critical domains related to

human health, safety, and wealth – people do not trust clusterings, or more generally learning

models that are not interpretable by humans. Models lacking interpretability are de�ned opaque

or black boxes (BBs), regardless of their nature (e.g., supervised neural network classi�ers as

well as unsupervised deep clustering techniques). ML models able to achieve the best predictive

performance are generally the most complex and thus di�cult to be inspected by humans and,

therefore, the adoption of opaque models for high-stakes decisions is mandatorily subject to

the derivation of some kind of human-intelligible knowledge.

To not renounce the impressive predictive capabilities of MLmodels, many strategies to obtain

explainable behaviours have been proposed in the literature [3, 4]. When possible, interpretable

ML predictors as decision trees are exploited [5]. Conversely, when these interpretable models

do not have a satisfying performance (e.g., shallow decision trees) or their complexity hinders

their actual readability (e.g., deep decision trees), it is possible to reverse-engineer the predictors’
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behaviour [6]. Symbolic knowledge-extraction (SKE) techniques are exploited to this end, acting

in a post-processing phase to extract interpretable knowledge out of a BB predictor.

Inspired by the works on explainable clustering [7, 8] and the ones on SKE [9, 10, 11, 12],

in this paper we provide a human-interpretable model blending both topics and resulting in

the development of ExACT, a new explainable clustering technique also suitable to perform

explainable classi�cation and regression tasks. ExACT may be applied to continuous input

features and both categorical and numerical output data. The technique is able to describe

clusters of instances in terms of human-comprehensible rules derived from a binary tree built

according to a hierarchical hypercubic partitioning of the input feature space.

The paper is organised as follows: Section 2 introduces background information on the

topics discussed here and related works present in the literature. Section 3 describes the

ExACT algorithm. Experiments and benchmark comparisons are discussed in Section 4. Finally,

conclusions are drawn in Section 5.

2. Related Works

2.1. Traditional Clustering

A large amount of di�erent clustering techniques have been proposed in the literature during

the decades, each one providing some peculiar advantages but at the same time bound to

speci�c limitations, usually regarding the properties of the clusters they can identify (e.g., shape,

density). For such a reason, there is no widely acknowledged optimum technique for achieving

the best predictive performance in every possible application. Amongst the most prediction-

e�ective techniques, it is worth mentioning the following ones: Gaussian mixture models

(GMMs; [13]), DBSCAN and DBSCAN++ [14, 15, 16], OPTICS [17], BIRCH [18], k-means [19],

Mean shift [20] and spectral clustering [21, 22]. The main drawback of these techniques in

terms of explainability is to rely on an opaque model.

In the following, further details for the traditional clustering techniques exploited within the

ExACT algorithm are provided.

2.1.1. Gaussian Mixture Models

GMMs can be applied to perform (soft) clustering since they are probabilistic models assuming

that all data points have been generated by a mixture of a �nite number of Gaussian distributions

having parameters to be determined. GMMs are more �exible for clustering than (for instance) k-

means, since they can �nd clusters of data that are not only spherical. In addition, soft clustering

is provided, since each GMM prediction is associated with a corresponding probability.

The performance of a GMM is strongly impacted by the number of Gaussian components to

consider during the model training. The tuning of this parameter can be automated by using

the Bayes information criterion (BIC). It is su�cient to train several instances of a GMM, with a

di�erent number of components, then calculate the BIC score for every instance and �nally

pick the one with the lowest associated BIC score.



2.1.2. DBSCAN

The DBSCAN algorithm (Density-Based Spatial Clustering of Applications with Noise; [14, 15])

is an unsupervised clustering technique to �nd subsets of data having arbitrary shapes. It

is based on a density criterion, so clusters are created by aggregating data samples w.r.t. a

user-de�ned parameter, usually called ε, representing the maximum distance between two data

points inside the same cluster. For this reason, the ε parameter is the most important to tune for

DBSCAN. An automated procedure for this purpose has been proposed in [23]. The peculiarities

of DBSCAN make it a good choice to perform outliers removal from clusters found by other

clustering techniques.

2.2. Explainable Clustering

During the last decades, a number of researchers have focused their attention on the expla-

nation of clusters, in particular in the �eld of medical applications, one of the most relevant

critical areas. Several works in the literature are related to tree-based clustering, such as the

IMM algorithm [24] and others [25, 26, 27]. For inducing a decision tree, there are two main

approaches: top-down and bottom-up. The top-down is the most used and it will also be used in

our proposal. This approach starts building a root node, which contains all objects of a training

database. After that, the root node is split into partitions (usually named child nodes) and this

is recursively repeated over the child nodes until a stopping criterion is met. It is worth noting

that these approaches share a common trait, i.e., they partition the input feature space with

cutting hyperplanes perpendicular to the most relevant features, taking into account one feature

for each cut.

Cluster explanation via rectangular input space partitioning has been proposed in [28],

whereas a less human-readable density-based clustering has been recently proposed in [29] for

the CLASSIX algorithm. The former enables higher degrees of human interpretability since

it describes clusters in terms of only 2 interval inclusion preconditions. As a drawback, it

may combine input features in the output description to create new composite features, thus

hindering interpretability from the human perspective.

Other examples of explainable clustering techniques, in particular applied to image data sets

and medical time series, have been presented in [30].

W.r.t. the aforementioned techniques, ExACT is able to consider all the input features –

similarly to tree-based clustering methods as IMM – to create a density-based partitioning—as

DBSCAN and CLASSIX. The main di�erence with all the existing methods is the highly human-

readable format of the identi�ed clusters, that are approximated via hypercubic regions. Thus,

ExACT o�ers amore compact and human-readable representation than existing techniques, even

though the hypercubic approximation may hinder its performance when applied to overlapping

clusters.

ExACT provides global explanations about the input feature space partitioning into disjoint

clusters, that may be used to obtain local explanations about single cluster assignments.

In the following we provide an overview of two explainable clustering techniques used as

benchmarks in the experiments presented here, namely CLASSIX and IMM.



2.2.1. CLASSIX

CLASSIX (contrived acronym de�ned by the authors as “CLustering by Aggregation with

Sorting-based Indexing” and the letter “X” for “eXplainability”) has been recently proposed

in [29] as an explainable clustering procedure based on two phases and denoted by small

computational time requirements. During the �rst phase, a greedy aggregation is performed

in order to create groups of training instances having small distances from each other—where

“small” is de�ned via an input parameter. A preceding sorting step is required to complete the

aggregation. The second phase consists of merging the groups into de�nitive clusters. The

merging phase may be density- or distance-based and it is described in detail in [29].

Users adopting CLASSIX need to provide a pair of parameters to de�ne the minimum size of

the clusters, intended as the number of instances, and the maximum distance between training

samples belonging to the same group (with reference to the aggregation phase).

CLASSIX is able to provide both local and global explanations. The global explanation is

based on the coordinates of the initial points for each one of the groups created at the end of

the �rst phase. Local explanations may describe the reason behind the cluster assignment for

a single instance as well as why two instances are assigned to the same cluster or not. Local

explanations are provided by listing the operations performed during CLASSIX’s merging phase.

2.2.2. IMM

In [24] the IMM (Iterative Mistake Minimization) clustering procedure is presented as an

accurate, e�cient, and interpretable method based on the induction of decision trees. Induced

decision trees are binary and their internal nodes are associated with training data partitions.

Node splits involve single features. The algorithm requires growing k leaves to identify as many

clusters, trying to keep the tree size as small as possible. During the tree construction, the

cluster’s fragmentation is minimised. Fragmentation is intended as spreading instances from a

single cluster over multiple subtrees.

To provide explanations for a cluster assignment it is su�cient to describe the complete path

from the tree root through the leaf associated with that assignment. As for the tree growth

complexity, a clustering identifying k clusters may be described by a tree with depth equal to

k − 1, in the worst case. This implies describing any clustering assignment with at most k − 1

constraints on the input features.

3. Explainable Clustering with Ex ACT

In this section we propose the design and implementation of a new explainable clustering

technique. ExACT (EXplainable Automated Clustering Technique) is a hierarchical clustering

algorithm based on the induction of binary trees where each node represents an input space

region approximating a cluster and having the shape of a hypercube (or of a di�erence of two

hypercubes). ExACT is a supervised technique since it distinguishes between input and output

features. It is suitable to be applied to continuous input attributes and continuous, discrete, or

categorical output variables.



A key peculiarity of the algorithm is to keep the memory of the output associated with the

clusters, other than the mere membership of instances to clusters. In the case of regression

data sets, the clusters’ outputs are real values or regression laws involving the input variables,

instead of the discrete outputs adopted for classi�cation and clustering data sets. More in detail,

we stick to the generalisation proposed in [31, 32], associating: (i) the most common label to

regions containing classi�cation or clustering data points; (ii) the mean value calculated on

the data points’ outputs to regions containing regression data points if there is a high degree

of similarity between these output values; (iii) a linear combination of the input variables to

regions containing regression data points, otherwise. For this reason ExACT has predictive

capabilities that go beyond the usual clustering assignments and its identi�ed clusters may be

evaluated with classical clustering scores but also with metrics borrowed from classi�cation

and regression tasks (i.e., predictive error can be evaluated through the F1 or R
2 scores).

In the following we use the notion of predictive error for the regions detected at the end of

the procedure. The predictive error is evaluated through the di�erence between the outputs

associated with the ExACT’s clusters and the corresponding expected predictions (i.e., the

ground truth). The predictive error assessment di�ers based on the kind of output feature at

hand. Indeed, it is de�ned as inversely proportional to the accuracy score for data sets having

discrete outputs and as the mean absolute error for real-valued outputs.

3.1. Propertiesof Ex ACT

The algorithm relies on two well-known clustering techniques—namely, GMMs and DBSCAN.

In a nutshell, GMMs are exploited for detecting the clusters inside an input space region,

then DBSCAN is applied to the detected clusters for the deletion of possible outliers. Finally,

hypercube approximation is performed to approximate each cluster to a hypercube that can

“explain” the cluster in a human-interpretable format. The goal of ExACT is to approximate the

set of clusters detected by GMMs (and cleaned by DBSCAN) with as many regions (cubes), with

the following criteria:

exhaustivity of the approximations all the input feature space is covered by regions, i.e.,

every input instance belongs to at least one region;

disjointnessof the regions each input instance inside the input feature space belongs to at

most one region;

strict hierarchy of the regions each found hypercubic region lies within a wider region

having the same shape.

The resulting decision tree provides an explanation of the clusters, explainability via inter-

pretability [33]. The strict hierarchy of the regions trivially implies that instances belonging to

an inner region also belong to the outer, enclosing ones, apparently violating the disjointness

property. However, when calculating the membership of data points to regions, ExACT assigns

every instance to the smallest region containing that point, so predictions are completely un-

ambiguous and easily human-understandable, following the induced tree structure from the

rightmost leaf through the root node, and disjointness is preserved.
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(a) Data set.
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(b) Approximation performed by Ex-

ACT.

(c) Binary tree induced by ExACT.

Figure 1: Example of ExACT partitioning performed on an artificial data set having concentric clusters.

ExACT is a recursive algorithm, starting from the surrounding cube – i.e., the minimal

hypercube enclosing all the data set samples – and iteratively building smaller, inner hypercubes,

inducing a binary tree structure. The rationale behind our method is to create at every iteration

a di�erence cube enclosing data points belonging to a single cluster, with the goal of minimising

the total amount of cubes and the cluster fragmentation. As detailed in the following, the

di�erence cube is the one obtained by subtracting the best cube (right child) from the starting

hypercube (parent node).

3.2. Algorithm and Parameters

The algorithm details are summarised in Algorithm 1 and an example of the performed par-

titioning on an arti�cial data set described by 3 concentric clusters is reported in Figure 1.

In particular, Figure 1a depicts the input data set, having 2 continuous input features and 1

continuous output feature. The approximation provided by ExACT is reported in Figure 1b,

whereas the binary tree induced by the algorithm during the recursive input space partitioning

is reported in Figure 1c.

Binary trees built by ExACT are obtained by partitioning the input feature space into hyper-

cubes. ExACT starts by taking into consideration all the input space, that represents the initial

hypercube. To build the tree the following steps are recursively executed:



Algorithm 1 ExACT pseudocode
Require: maximum depth δ, default value: 2

Require: predictive error threshold θ, default value: 0.1

Require: maximum amount of clusters ξ, default value: 2

Provide: the root node of the induced tree

1: function ExACT(D)

2: H0 ← SurroundingCube(D)
3: N0 ← NewNode(H0, D)
4: Split(N0, 1)
5: return N0

6: function SurroundingCube(D)

7: return the minimal cube enclosing all the points of clusterD

8: function Split(node, depth)

9: clusters← CreateClusters(node.data)
10: eligible← ClustersToNodes(clusters, node.cube)
11: if eligible = ∅ then return

12: best← argmax
n∈eligible

{ Volume(n.cube) }

13: node.right← best

14: node.left← NewNode(node.cube, node.data ∖ best.data)
15: error ← PredictiveError(node.right)
16: if (error > θ) ∧ (depth < δ) then Split(node.right, depth+ 1) . Recursion

17: function NewNode(H ,D)

18: node← new Node()

19: node.cube← H, node.data← D

20: node.right← ∅, node.left← ∅
21: return node

22: function CreateClusters(D)

23: return at most ξ clusters containing the data ofD

24: function ClustersToNodes(C ,H)

25: nodes← ∅
26: for all cluster ∈ C do

27: data← cluster ∖ { c ∈ cluster | c is an outlier }
28: cube← SurroundingCube(data)
29: if cube ̸= H then nodes← nodes ∪ { NewNode(cube, data) }

30: return nodes

31: function Volume(H)

32: return the volume of hypercubeH

33: function PredictiveError(node)

34: return average predictive error for node

1. given a hypercubic portion of the data set, associated with a tree node (a.k.a., the current

node), apply GMMs to determine both the optimal number of clusters and the clusters

themselves;

2. for each found cluster, apply DBSCAN to remove the outliers for that cluster (to avoid



creating dirty, too big hypercubes);

3. construct the minimal surrounding cube enclosing the data points of each cluster (i.e., ap-

proximate clusters to hypercubes): each cluster is associated with the smallest hypercube

containing all the points within it;

4. select the best cube amongst all the created hypercubes, that is the one having the biggest

volume, excluding hypercubes equivalent to the current node’s cube (i.e., the one enclosing

the whole data set when performing the �rst algorithm recursion);

5. assign the best cube, with all the contained data points, to the right child of the current

node;

6. assign the di�erence cube to the left child of the current node—the di�erence cube is

the one obtained by subtracting the best cube (right child) from the starting hypercube

(parent node);

7. repeat all the steps above considering the right child as the current node if the predictive

error measured for the right child’s cube is greater than a user-de�ned threshold θ.

Note that the algorithm is not going to split the left child, since the di�erence hypercube is

assumed to be su�ciently precise. The di�erence hypercube, in fact, typically approximates a

single cluster, or a cluster portion if ExACT is not able to avoid fragmentation via hypercubic

approximation.

The algorithm terminates when the node assigned to the right child contains a cube whose

predictive error is smaller than the θ threshold or, otherwise, after a number of recursive

iterations equal to the maximum user-de�ned depth δ. The set of hyper-parameters to tune

for ExACT is completed by ξ, which represents the maximum number of clusters that it is

possible to �nd with the GMMs. We stress here the fact that ξ is only an upper bound since

the optimal number of clusters to be identi�ed is automatically assessed through the BIC score

during the execution of ExACT. It is recommended to keep ξ larger than the actual cluster

amount, if known, in order not to perform a wrong clustering. Very large values for ξ do

not a�ect the performance of ExACT, since they do not imply selecting with the automated

BIC-based procedure a large number of clusters to be detected with the GMMs. Analogously, the

ε parameter of DBSCAN is automatically set as suggested in [23], so it is not a parameter to be

chosen by users executing ExACT. The δ parameter should be set according to the consideration

that a depth equal to n produces at most n+1 explainable clusters. It is important to notice that

only one explainable cluster (the innermost in the hierarchy) is a hypercube, all the others are

di�erence cubes. Finally, θ strongly depends on the task at hand. When dealing with categorical

output features, as for ExACT applied on clustering or classi�cation data sets, θ needs to be

de�ned as a predictive accuracy threshold. In this case, a cube is further partitioned only if its

predictive accuracy is lower than the given threshold. On the other hand, when performing

clustering on regression data sets, the threshold represents the maximum mean absolute error

allowed for individual cubes. Consequently, hypercubes whose predictive error exceeds the θ

threshold are further partitioned.



4. Experiments

Experiments to assess the capabilities of ExACT applied to clustering, classi�cation, and

regression tasks in comparison with state-of-the-art clustering and other predictors are re-

ported in the following. The adopted ExACT implementation is included in the PSyKE frame-

work1 [34, 35, 36, 37].

4.1. Ex ACT for Explainable Clustering
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Figure 2: Example of ExACT clustering compared with other state-of-the-art techniques.

1Code available at https://github.com/psykei/psyke-python

https://github.com/psykei/psyke-python


Listing 1 Clustering rules provided by ExACT for the Iris data set.

Cluster 1 if PetalWidth in [1.6, 2.5] and PetalLength in [4.8, 6.9] and

SepalWidth in [2.5, 3.8] and SepalLength in [5.7, 7.9].

Cluster 2 if PetalWidth in [1.0, 2.5] and PetalLength in [3.0, 6.9] and

SepalWidth in [2.2, 3.8] and SepalLength in [4.9, 7.9].

Cluster 3 otherwise.

The capabilities of ExACT in clustering labelled data have been assessed on six di�erent

data sets. Three of them are synthetic clustering data sets included in the Scikit-Learn library2.

These data sets are described by 2 continuous input features and they have 2 or 3 clusters to be

identi�ed. The other three are real-world classi�cation data sets:

Iris data set [38], composed of 4 continuous input features and a categorical output feature

assuming 3 di�erent values. Only the petal length and width are reported in the �gures

shown in this section;

Wine data set [39], having 13 real-valued features and 3 possible discrete output values repre-

senting as many classes. Only alcohol and proline input features are shown in the �gures

reported here;

Wisconsin breast cancer (WBC) data set [40], a binary classi�cation task described by 30

continuous input features. Worst smoothness and worst symmetry are the input features

reported in the �gures.

Figure 2 depicts our experiments involving clustering. All the data sets are represented in the

leftmost column of Figure 2a. The other columns report the results of traditional and explainable

clustering techniques applied to the same data sets. We selected spectral clustering, Ward,

BIRCH, and GMMs as traditional clustering benchmarks, whereas CLASSIX and IMM are the

explainable alternatives. The clustering assignments performed by ExACT are reported in

the rightmost column. In Figure 2b the performance assessments for all the aforementioned

clustering techniques applied to all the selected data sets are summarised. The adopted metrics

are the following: (i) adjusted rand index (ARI; [41]); (ii) adjusted mutual score (AMI; [42]);

(iii) Fowlkes-Mallows index (FMI; [43]); (iv) V-measure (V; [44]); (v) computational time, reported

in seconds and averaged over 100 runs. The other 4 indices are de�ned in the [0, 1] interval, with

values close to 1 identifying good clustering assignments. Being metrics explicitly designed for

clustering tasks, they are not susceptible to permutations and/or renaming of the clusters’ labels.

For this reason, they are not applicable to evaluate the accuracy score of clustering techniques

applied to perform classi�cation tasks.

Figure 2a enables a qualitative assessment of the performance achieved by the clustering

techniques. ExACT, CLASSIX, and spectral clustering appear as the best procedures. A quanti-

tative assessment can be carried out on the results of Figure 2b, highlighting the superiority of

these 3 algorithms. Unfortunately, none of these techniques can achieve the best performance

on all the data sets. A drawback of ExACT is that it may be slower than the others. However, it

completes its task in less than 1 second in all the case studies.

2https://scikit-learn.org/stable/modules/clustering.html

https://scikit-learn.org/stable/modules/clustering.html


Clustering rules extracted via ExACT for the Iris data set are exempli�ed in Listing 1.

Amongst the 3 explainable clustering techniques, IMM is the one having the lowest associated

scores. On the other hand, CLASSIX seems to be equivalent or only slightly worse than ExACT

from the clustering performance standpoint. The interpretability of these techniques cannot

be easily assessed, since they do not provide the same representation. IMM and ExACT are

comparable since they follow a tree structure and therefore their clusters can be described by

reading the tree paths from the root to the leaves. CLASSIX, conversely, provides a di�erent

sort of explainability. For instance, when queried about an individual assignment, CLASSIX

provides the numeric code associated with the corresponding output cluster and the one of the

group identi�ed during its �rst grouping phase. No further information about the clusters or

groups is provided unless to query CLASSIX for a global explanation. In this case, the centroid

coordinates of each group are listed, together with the indication of the �nal cluster where

the groups have �owed into. It is clear how this kind of explanation is not straightforward to

be understood by humans, since it involves a chain of concepts encoded with numbers and

coordinates, such as the radius of the CLASSIX groups. Furthermore, if CLASSIX is executed on

normalised data, also its response will contain normalised coordinates. Conversely, ExACTmay

be provided with the normalisation schema in order to obtain cluster explanations that do not

require further manipulation to enable human analysis. Finally, ExACT is more general-purpose

than the other techniques, as discussed in the following.

4.2. Ex ACT for Explainable Classification

Given its ability to output (explainable) predictions when queried with samples to be classi�ed,

ExACT is also suitable to carry out classi�cation tasks. Figure 3 depicts the results of ExACT

applied to perform classi�cation on the Iris, Wine, and WBC data sets. Its predictions are

compared with those of state-of-the-art machine learning predictors, namely: a k-nearest

neighbours (k-NN), a decision tree (DT), and a random forest (RF) model. The performance of

these models is assessed and compared for each data set through the classi�cation accuracy

score, representing the rate of correct predictions over all the predictions. Predictions and

measured accuracy scores are shown in Figures 3a and 3b, respectively.

ExACT achieves a comparable or better predictive performance w.r.t. the other models. In

addition, its predictions are more valuable, since they are human-interpretable. We exemplify in

Table 1 the clusters obtained for the Iris data set and in Figure 4 the corresponding explainable

tree. The ExACT instance to obtain these results has been parametrised with a maximum depth

δ = 2, an error threshold θ = 0.1 and a maximum amount of clusters ξ = 3. The selected δ

value enables the creation of up to 4 clusters. Being a classi�cation data set, θ = 0.1 implies

that hypercubic regions having an accuracy score smaller than 1 − θ = 0.9 are further split

during the recursive iterations of ExACT. The provided clustering is human-interpretable since

for each possible Iris output class an associated hypercubic input space region is provided and

such regions are described in terms of interval inclusion constraints over input variables.

4.3. Ex ACT for Explainable Regression

ExACT has been applied to several regression data sets, namely:
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Figure 3: Example of ExACT compared with other state-of-the-art classifiers.

Input Petal Petal Sepal Sepal Iris

feature width length width length class

Cluster 1 1.6 – 2.5 4.8 – 6.9 2.5 – 3.8 5.7 – 7.9 Virginica

Cluster 2 1.0 – 2.5 3.0 – 6.9 2.2 – 3.8 4.9 – 7.9 Versicolor

Cluster 3 0.1 – 2.5 1.2 – 6.9 2.2 – 4.1 4.4 – 7.9 Setosa

Table 1

Example of ExACT clustering applied for classification on the Iris data set.

Combined Cycle Power Plant (CCPP) data set [45], having 4 input continuous features. Only

ambient temperature and exhaust vacuum input features are reported in the following

�gures;

Istanbul Stock Exchange (ISE) data set [46], described by 7 continuous input features. Only

the stock market return index of UK and the MSCI European index are shown in the

�gures;



Figure 4: Decision tree provided by ExACT for explainable classification on the Iris data set.
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(a) Output predictions for regression tasks.
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(b) Regression performance assessments.

Figure 5: Example of ExACT compared with other state-of-the-art regressors.

Diabetes data set [47], containing 10 input variables. In the �gures the S1 and S5 features are

reported.

We applied to these data sets ExACT and a pool of ML regressors (a k-NN, a DT, and a RF) as

for the classi�cation case study. Ground truth and predictions are reported in Figure 5a. To assess

the predictive performance of the algorithms the R2 value has been adopted. Corresponding



Ambient Exhaust Ambient Rel. humidity Net hourly electrical

temp. (AT) vacuum (EV) pressure (AP) (RH) energy output

Cluster 1 6.2 – 32.5 35.4 – 50.2 998.1 – 1026.4 35.6 – 100.1 499.9 - 2.2 AP - 0.3 AT - 0.1 EV

Cluster 2 6.2 – 32.5 34.0 – 50.2 997.9 – 1026.4 35.6 – 100.1 697.9 - 1.8 AP - 2.0 AT + 0.6 EV

Cluster 3 6.2 – 35.8 25.4 – 81.6 997.8 – 1026.5 25.6 – 100.1 234.7 - 1.4 AP - 0.3 AT + 0.3 RH

Cluster 4 2.3 – 35.8 25.4 – 81.6 992.9 – 1033.3 25.6 – 100.2 628.2 - 2.2 AP - 0.5 AT - 0.2 EV

Table 2

Example of ExACT clustering for the CCPP data set.

measurements are shown in Figure 5b. Once again, ExACT has a predictive performance

comparable or even superior to that of ML models, and its predictions are human-interpretable

due to its hypercubic approximation strategy.

An example of ExACT’s explainable clustering applied to a regression task is reported in

Table 2 for the CCPP data set. The corresponding algorithm parameters are δ = 3, θ = 0.02

and ξ = 2. We stress here that when ExACT is applied for regression the recursive re�nement

of hypercubic approximations is performed only for cubes having mean absolute predictive

error greater than the θ threshold. It is worthwhile to notice that the outputs shown in Table 2

are linear combinations of the input variables. It is as well possible to obtain constant outputs,

to the bene�t of human interpretability but at the expense of predictive performance.

5. Conclusions

In this paper we present an explainable clustering technique named ExACT, applicable to

any kind of task described by a data set having continuous input features. No constraints are

assumed on the output feature. This algorithm takes advantage of GMMs and DBSCAN to

detect clusters and approximate them with human-interpretable hypercubic regions described

in terms of interval inclusion constraints on the input features. Our experiments prove the

e�ectiveness of ExACT performing explainable clustering, classi�cation and regression in

comparison to other state-of-the-art traditional and explainable clustering techniques, but also

w.r.t. ML classi�ers and regressors.

Our future works will be focused on enhancing the rationale behind the ExACT’s region

approximation and possibly on the adoption of deep clustering techniques instead of GMMs

and DBSCAN, as in the current version. Furthermore, ExACT may bene�t from an automatic

technique enabling parameter auto-tuning and in particular we plan to implement a procedure

aimed at highlighting the best values for the maximum depth and the predictive error threshold

parameters.
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