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Abstract

A significant challenge in detecting and mitigating
bias is creating a mindset amongst AI developers to
address unfairness. The current literature on fair-
ness is broad, and the learning curve to distinguish
where to use existing metrics and techniques for
bias detection or mitigation is difficult. This sur-
vey systematises the state-of-the-art about distinct
notions of fairness and relative techniques for bias
mitigation according to the AI lifecycle. Gaps and
challenges identified during the development of this
work are also discussed.

1 Introduction

Artificial intelligence (AI) systems exploiting machine learn-
ing (ML) algorithms trained on data from different domains
– banking, education, legal, or human resources – often sup-
port humans in their decision-making processes. Despite the
many benefits decision support systems may offer in eco-
nomic, speed and accuracy of solutions, we run the risks of
discriminating and biasing societal groups of individuals if
training data is biased [Leavy et al., 2021].

The scientific community has been extensively working to
address fairness issues through solutions, methods, and met-
rics to avoid bias by increasing awareness of the impact of AI
failures on developers and industries. However, the literature
is wide, many existing approaches can be applied only to spe-
cific types of bias and, thus, it is not so obvious how to find the
right approach to be applied to a given setting. Furthermore,
it is key to ensure that solutions to preventing bias are applied
at the right time in the development of AI systems. Incor-
porating them into the AI lifecycle enables AI practitioners
to bring them to their daily practices. Therefore, despite the
many attempts to compile information on a survey for fairness
in ML [Pessach and Shmueli, 2022; Mehrabi et al., 2021;
Caton and Haas, 2020], it is important to couple the concept
of fairness with the technique that can be exploited to achieve
it, positioning them in the AI lifecycle.

The criteria to systematise the state-of-the-art chosen in
this work use, as inputs, existing work on fairness in ML,
and enlarge the discussion focusing on the two activities that

∗Contact Author

must be run in the AI lifecycle in terms of fairness: i) fair-
ness awareness, how to measure and assess fairness (or bias,
Section 2), and ii) fairness reparation/mitigation, how to mit-
igate bias in models when necessary and in which step of the
AI lifecycle (Section 3). Using the work in this paper, re-
searchers and developers can find the appropriate technique
to use in their application scenario, depending on the most
efficient moment of the AI lifecycle. Current gaps and future
opportunities in the field are as well identified.

Section 2 discusses the notion of fairness along with re-
lated metrics. Fairness enforcing techniques, step two of the
process, are then reviewed and divided into categories that
consider fairness metrics and the phase in the AI lifecycle
(Section 3). Finally, the work ends by discussing challenges
and potential barriers (Section 4).

2 Assessing Fairness

Two elements are required for fairness awareness: i) defini-
tion of the fairness notions and ii) a quantitative mechanism
to measure them. Fairness notions are context-dependent and
encompass how society perceives what is fair in the case at
hand. They can be evaluated through a statistical formula
– fairness metric – providing a quantitative way to measure
fairness. As a result, developing quantitative formulations of
fairness metrics becomes challenging due to the process of
capturing all the nuances of fairness that can arise on techni-
cal, societal and legal aspects [Chierichetti et al., 2019]. Of
course, fairness metrics in AI applications must be balanced
with other and often conflicting AI metrics—related to other
trustworthy requirements, such as accuracy and performance.

Dozens of competing fairness metrics are proposed in the
literature. Frequently, these are bespoke to some scenarios,
each with specific advantages and drawbacks. Many different
propositions were made to categorise these metrics, but none
of these is complete [Howard et al., 2016]. This work encom-
passes relevant fairness metrics categorisation, discussing as-
pects that should be considered when selecting a particular
metric. Figure 1 sets out a general framework for systematis-
ing the different fairness notions - labelled from 1) to 6).

2.1 Procedural Fairness

Procedural fairness is a concept inherited from administra-
tive law concerned with equality of treatment within the pro-
cess that carries out a decision, i.e., fair treatment of people.
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Figure 1: Organising framework of algorithmic fairness metrics

In the computational area, specifically for AI algorithms, the
concept relates to the information that must be considered in
decision-making. This has often led to being interpreted in
the literature as not including sensitive attributes in the AI
algorithm. Omission of the sensitive attributes or fairness
through unawareness – 1) in the Figure 1 – is here the main
approach. However, the model accuracy is reduced and the
discrimination effects do not improve as a consequence of
neglecting relationships with proxy variables, ignoring that
prejudice may not be caused by a single variable but rather
by a combination of several ones. Omissions potentially in-
crease bias or concealment of discrimination [Bacelar, 2021].
Metrics: fairness through unawareness [Dwork et al., 2012].

2.2 Outcome Fairness

Outcome fairness is the term used to define equality (‘fair re-
sult’) of the outcomes of the decision making processes. The
literature is wider in this category and can be classified into
two orthogonal groups of two dimensions each: individual
vs. group notions of fairness, and observational vs. causal ap-
proaches. In the first, the individual notions of fairness com-
pare single outcomes for individuals to establish their fairness
while group notions of fairness work on outcomes aggregated
by several individuals belonging to the same sensitive cate-
gory. These two dimensions are not mutually exclusive. In
the second case, notions of fairness can be classified as ob-
servational, described as joint distributions of observable as-
pects such as outcomes, decisions, features, and sensitive at-
tributes; or casual in case the causal inference is required to
acquire knowledge about variables and their (co)relations.

Observational Fairness. Some of the advantages of the
observational definitions are the easiness of the state and a
lightweight formalism. Moreover, assumptions are excluded
from the inner workings of the classifier, the impact of the
decisions, and possible correlations between features and out-
comes. However, a major drawback is that they share limita-
tions in the scope of the evaluation of the available data. They
do not evaluate what is not observable [Kilbertus et al., 2017].

Four categories compose the set of observational fairness,
three for the group notion and one for the individual cate-
gory. The group notion of fairness considers as the core of
fairness definitions and metrics some of the fundamental as-
pects of a classifier. These are a) the sensitive variable S as
number of groups to be measured, b) the target variable Y
as the prediction classes, and c) R as the classification score.

Based on these, three subcategories arise based on the “non-
discrimination” statistical criteria: independence, separation
and sufficiency – labelled in Figure 1 as 2), 3) and 4) respec-
tively. Note that, there is a relation of mutual exclusion be-
tween the three subcategories that make them pairwise in-
compatible. Observational fairness can be ensured also at the
individual level by applying the same criteria to single indi-
viduals instead of groups (6) in Figure).
Independence metrics: statistical parity, group fairness, de-
mographic parity, conditional statistical parity.
Separation metrics: equal opportunity, equalised odds, bal-
ance for the negative class, balance for the positive class, pre-
dictive equality, equalised correlations.
Sufficiency metrics: groups calibration, predictive parity.
Individual fairness metrics: individual fairness.

Causal Fairness. Causality-based criteria, 5) in Figure 1,
employs additional knowledge (e.g. external experts) to dis-
cover the causal structure of the case at hand. The structure
can be analysed by comparing different outcomes of counter-
factual scenarios and by modifying sensitive attributes that
belong to this. For example, the what-if scenario: “what
would have been the decision if that individual/group had
a different race?” Then, counterfactual scenarios can be
compared and evaluated, highlighting fairness discrepancies.
Causality-based notions are richer than observational notions
and permit the selection of which causal paths – from sensi-
tive attribute to an outcome – can be legitimate or should be
forbidden [Mhasawade and Chunara, 2021]. Causal notions
are promising, but the fairness notion is governed by the con-
struction of causal graphs, often difficult to be built due to
lack of knowledge or computationally expensive.
Metrics: unresolved discrimination, counterfactual fairness.

2.3 Running Example on Recruiting Tool

To illustrate the difference between metrics, let us consider an
example of an AI recruiting tool in which the system could
potentially discriminate across sensitive attributes, like for
instance gender. A naive approach of fairness through un-
awareness would consist of removing the dataset’s sensitive
attributes. The method is proven to be inefficient in some
cases [Dwork et al., 2012]. This means in our example that
although gender features are omitted from the dataset, other
unknown correlated features might remain (e.g., marital his-
tory) being “proxies” for revealing the gender, thus, the model
remains biased.

Enforcing independence would ensure the equality of out-
comes (selection) – the classification scores – as these should
be independent of the sensitive attribute. For instance, via sta-
tistical parity, the outcome is the same for different sensitive
groups (equal acceptance rate of males and females applying
for a position); via demographic parity, each sensitive group
– males and females – should receive the positive outcome –
being hired – at equal rates; via conditional statistical parity,
the outcome is the same for different sensitive groups, adding
additional factors for consideration (e.g. divorced men and
divorced women have the same rate of acceptance, and single
men and single women have the same rate of acceptance).

A “stronger” criterion that could be utilised to enforce fair-
ness is to enforce rules like “similar people should be treated
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similarly”, i.e., given a set of candidates that are qualified
enough for the work, no bias should materialise when a sub-
set of these candidates is chosen for the work. This could
be achieved by enforcing separation, ensuring equality of er-
rors. In terms of metrics, and related to the example, equal
opportunity means having a similar rejection rate for males
and females, for example, despite being qualified enough for
selection. This means each group’s likelihood of false pos-
itive and false negative predictions should be equal. With
equalised odds, the chances of a false negative and a false
positive should be the same for each sensitive group. In the
example, the chance that you will be denied a job even though
you are qualified should be the same whether you are a man
or a woman, and the chance that you will be given a job even
though you are unqualified should be the same whether you
are a man or a woman. Ensuring balance for the negative
class means the probability of getting a correct negative out-
come is the same for each sensitive group, i.e., the probability
that you will be denied a job when you are not qualified is the
same whether you are a man or a woman (dual for the positive
class). With predictive equality, the chances of predicting a
false positive should be the same in each sensitive group, i.e.,
the chance that you will be given a job even though you are
not qualified should be the same whether you are a man or
a woman. One of the reasons that separation might be more
desirable than independence is because there might be some
correlation between the sensitive features and outcome.

The sufficiency notion (calibration) ensures that choices
reflect the same accuracy per subgroup. In the example,
it means the chances of males and females being qualified
enough given the hiring decision should be the same. Ex-
ploiting sufficiency means looking for calibration, i.e., if we
consider a set of people who receive a predicted probability
of p, we would desire that the fraction of the members of this
set that are positive instances of the classification problem is
equal to p. Moreover, if we are concerned about fairness be-
tween two groups (e.g. male and female) then we would like
this calibration condition to hold simultaneously for the set of
people within each of these groups as well.

Finally, causality – exploiting the causal graph and the ob-
served data – means to answer hypothetical questions of the
form “What would the hiring decision have been in case I am
a different gender?”. Ensuring counterfactual fairness means
that for any individual, the outcome does not change in the
counterfactual scenario where the sensitive attributes change.

3 Enforcing Fairness

Figure 2 depicts the phases of the AI lifecycle. The figure
shows three inner arrows encompassing the primary phases
for the time of intervention in terms of fairness. This time
is also commonly named fairness intervention time and de-
fines the adequate phase in which fairness must be tackled in
order to maximise the adequate result or to enable its appli-
cability. The three phases are: pre-process, which comprises
the data processing (from collection requirements to prepa-
ration); the in-process, encompassing the ML modelling, de-
velopment and evaluation; finally, the post-processing, which
is when the model is deployed, tuned and monitored.

Figure 2: AI lifecycle & fairness intervention time

Pre-processing techniques approach the problem by re-
moving the underlying discrimination from the data prior to
modelling. This is argued in the literature to be the most
flexible phase of repairing bias in the pipeline, as it makes
no assumptions with respect to the choice of applied mod-
elling technique. The methods, that modify the training data
are at odds with policies like GDPR’s right to an explana-
tion, potentially introducing new biases. Sufficient knowl-
edge of the data and veracity assumptions are required. In-
processing techniques modify the traditional learning algo-
rithms to account for fairness during the model training phase.
They require a higher technological effort and integration
with standard ML libraries to avoid porting challenges. Post-
processing final classes of methods can be performed as post-
training processing of the output scores of the classifier to
make decisions fairer. The accuracy is suboptimal when com-
pared to “equally fair” classifiers and could be the case that
test-time access to protected attributes is needed, which may
not be legally permissible.

Table 1 categorises existing fairness intervention ap-
proaches by their phase in the AI lifecycle and technique
(rows), and which notion of fairness is sought (columns).

3.1 Pre-processing

Blinding. Blinding is a pre-processing technique that, ac-
cording to Robertson [2016] “immunises” a predictor with
respect to one or more sensitive variables. Authors define
’blinding predictors’ as the process to protect attributes which
are not direct inputs or features in the computation, thus there
is no observable differentiation of results based on the at-
tributes. For example, a predictor is gender blind if there is
no observable differentiation of results based on gender.

Furthermore, a different process different to procedural
fairness blinding via “immunity” is to blind the predictor via
“omission”. In this case, it allows fairness through unaware-
ness, then explicitly prohibiting the input of any protected
characteristics into the decision models. Unfortunately, omis-
sion has been shown to reduce model accuracy and not im-
prove discrimination effects [Chen et al., 2019].
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Moreover, blinding in the scope of outcome fairness can
lead to achieving independence. Feldman et al. [2015]

present a method which removes dependencies between two
variables but still allows these variables to be considered in
the prediction process. However, the approach presents some
implementation barriers and limitations such as the applica-
bility to non-numeric data (i.e., categorical).

Both omission and immunity neglect relationships with
proxy variables leading to potential increases in discrimina-
tion [Bacelar, 2021]. Blinding (or partial blinding) has also
been used as a mechanism to conduct fairness audits, similar
to causal model approaches.

Adversarial Learning. This technique is used in ML appli-
cations before a training process. There are adversaries that
try to establish the fairness process. In case the model is not
considered fair, the adversary’s input is used for the model re-
finement. Adversaries are used as a pre-processing transfor-
mation process on the training data (e.g. [Feng et al., 2019;
Adel et al., 2019]) often moving towards a notion of censor-
ing the training data with similar objectives to blinding.

Independence is the notion of fairness exploited by exist-
ing adversarial learning approaches and specifically focused
on disparate impact and statistical parity. Some approaches
allow the classifier to be additionally evaluated on their indi-
vidual fairness dimension [Feng et al., 2019].

The main advantage of adversarial learning approaches in
fairness is that they can take into account several constraints
at the same time, often by treating the paradigm as a black-
box. However, it has been documented that the applicability
of these methods often lacks stability, making them difficult
to be trained consistently [Bacelar, 2021]. In particular, in
transfer learning, it happens that the protected variable is es-
tablished only for a limited number of samples.

Causal Approaches. The discovery of causal relationships
between variables and data is the focus of causal methods re-
cently applied to fairness [Kilbertus et al., 2017; Mhasawade
and Chunara, 2021; Gupta et al., 2018; Chiappa, 2019;
Kusner et al., 2017], as it is shown in Table 1. Specifically,
to detect proxies of sensitive variables causal approaches are
well suited for purpose. However, computational resources
are high as the technique used to model conditional assump-
tions between variables is by using directed acyclic graphs.

Fairness metrics involved in causal approaches for both
group and individual spanning from unresolved discrimina-
tion and proxy discrimination to counterfactual fairness re-
spectively. The metric compares a decision from two com-
plementary perspectives: its fairness towards the individual
(actual world) and its fairness in positioning the individual
within a different demographic group (counterfactual world).

The information required to build the context knowledge
of a causal model must be precise to adequately examine the
scope, hence making its construction challenging or not al-
ways accessible. Therefore, they have been criticised for not
well examining their applicability in practice [Mhasawade
and Chunara, 2021].

Relabelling and Perturbation. Altering the distribution of
the variables in the training set is an approach that was largely

investigated and can be categorised into two techniques: re-
labelling and perturbation. Relabelling, some authors re-
ferred to it as data-massaging, is the process of modifying
or flipping the labels of training data instances to ensure that
the proportion of positive instances is equal for all protected
groups [Calders and Verwer, 2010; Kamiran et al., 2010;
Luong et al., 2011; Kamiran and Calders, 2012]. Perturbation
changes directly the value of the dependent variable [Wang et
al., 2019]. The main drawback of the approach is in the le-
gal scope. The modification of the data via relabelling and
perturbation is not always legitimate, hence changes to the
data should be minimised. Furthermore, in some cases clas-
sifiers are negatively affected by altering the training data in
an attempt to mitigate them. For these reasons, continuous
(re)assessing fairness metrics and decisions is of paramount
importance but also costly.

Table 1 shows that frequently relabelling and perturbation-
based approaches are used as pre-processing techniques to
prepare for an in-processing approach and reach fairer algo-
rithms. However, some approach exist for the post-processing
phase where the probability of having a positive decision
as an outcome when this is altered by the modification of
the probabilities in the model [Calders and Verwer, 2010;
Kamiran et al., 2010]. Finally, the most exploited fairness
notion, as shown in the Table is Independence – demographic
parity metrics with some exceptions of conditional statistical
parity metrics – and according to Luong [2011]. However,
recent work shows an algorithm that targets samples with an
individual bias for remediation in order to improve both indi-
vidual and group fairness metrics [Lohia et al., 2019].

(Re)sampling. The main objective of sampling methods is
to create a set of representatives that trains robust algorithms
on detecting groups of the data that can be (are) underprivi-
leged. Decoupled classifiers and multitask learning emerged
as promising techniques has it is shown in Table 1 [Awasthi
et al., 2021; Dwork et al., 2018]. The main objective of the
authors on these approaches is to find the most accurate mod-
els for given subgroups (decoupled classifiers) or consider
the observation of different subgroups (multitask learning).
In both cases, the training data is decoupled, splitting it into
subgroups according to sensitive variables or learned as part
of the pre-processing phase. However, there are challenges
in the selection of groups related to the processes of ensur-
ing balance, atomicity, and robustness. Some of the conse-
quences of not performing an adequate selection of groups
can lead to overfitting, issues with minimising fairness met-
ric(s), and/or other theoretical violations.

Reweighting. Reweighting is a technique that assigns
weights to instances of the training data while leaving the
data itself unaltered—in contrast to relabelling, perturbation,
and transformation. With appropriate sampling – in compari-
son to relabelling and blinding approaches – reweighting can
achieve high(er) accuracy. However, an issue is related to
the classifier’s stability and robustness. Moreover, the pro-
cess becomes more opaque and therefore less explainable.
Usually reweighing is applied as a pre- and in-processing ap-
proach. For example, Kamiran [2012] assigns weights based
on the probability of an instance belonging to a particular
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class and sensitive value pairing (pre-processing). Whereas,
Krasanakis [2018] is an approach that first exploits an un-
weighted classifier for learning sample weights and then re-
trains their classifier using these weights (mixing pre- and in-
processing).

The aims of reweighting are i) to set a lower/higher weight
(importance) to some sensitive training samples [Kamiran
and Calders, 2012] ii) to specify the frequency count of a
kind of instance [Calders and Verwer, 2010], and iii) to in-
crease the stability of the classifier [Krasanakis et al., 2018].

3.2 In-process

Adversarial Learning. Most approaches in this area ex-
ploit notions of fairness within the adversary to apply feed-
back for model tuning as a form of in-processing where the
adversary penalises the model if a sensitive variable is pre-
dictable from the dependent variable [Edwards and Storkey,
2015; Beutel et al., 2017; Feng et al., 2019].

Constraint Optimisation & Regularisation. In-
processing (constraint) optimisation approaches have
similar goals to fairness regularisation methods; hence, we
present them together. The notions of fairness are included
in constraint optimisation using several mechanisms such
as the notions of fairness in the classifier loss function
operating on the confusion matrix during the training of
the model, with the incorporation of additional constraints
– precision or budget – to improve the accuracy fairness
trade-off [Goh et al., 2016] or with the reduction of the
problem to a cost-sensitive classification one [Goh et al.,
2016]. The challenge is in balancing conflicting constraints
that potentially lead to unstable training.

Table 1 classifies several works that are into in-process
techniques and that deal with group fairness in particular with
independence, [Zemel et al., 2013; Agarwal et al., 2018;
Louizos et al., 2015; Goh et al., 2016; Zafar et al., 2017a;
Kamishima et al., 2012; Liu and Vicente, 2021], sepa-
ration, [Corbett-Davies et al., 2017; Zafar et al., 2017b;
Woodworth et al., 2017; Quadrianto and Sharmanska, 2017;
Bechavod and Ligett, 2017; Pessach and Shmueli, 2021],and
sufficiency notion. An interesting approach is the one by
Ignatiev [2020] that reconsiders the criterion of fairness
through unawareness but proposes a semantic definition. Ig-
natiev [2020] discuss a formal method for certifying fairness
through unawareness, developed criteria for assessing fair-
ness in ML models and bias in datasets and relating fairness
with explanations and robustness.

In the case of regularisation methods applied to fairness,
the technique applied is to add one or more penalty terms
into the model that evaluates the classifier behaviour seek-
ing for biased outcomes [Heintz et al., 2021; Kamishima et
al., 2012; Liu and Vicente, 2021; Bechavod and Ligett, 2017;
Pessach and Shmueli, 2021]. However, key challenges to its
applicability are related to the fact that regularisation meth-
ods are either non-convex in nature or convexity is reached at
a high computational cost, therefore not all fairness measures
are equally affected by regularisation parameters. To balance
the fairness and accuracy some works augment the (convex)
loss function of the classifier including fairness constraints

(e.g. [Kamishima et al., 2012; Liu and Vicente, 2021]). Fi-
nally, the outcomes of applying regularisation on different
terms and penalties are data-sets dependant, i.e. the choice
affects the trade-off between both accuracy and fairness [Mc-
Carthy and Narayanan, 2023].

3.3 Post-process

Calibration. Calibration is defined as: “to ensure that pos-
itive predictions proportion equals positive examples pro-
portion” [Pleiss et al., 2017]. In the context of fairness,
this should also hold for all subgroups existing in the data.
This applicability was explored on multiple protected groups
and/or using multiple fairness criteria at once and has been
shown by authors to be impossible [Pleiss et al., 2017]. How-
ever, there are approaches to handle the impasse of achieving
calibration and other fairness measures. For example, in the
post-processing phase and to achieve a balance between ac-
curacy and fairness, the individuals were randomised. But
this solution affects outcome, as randomised individuals can
be negatively impacted and the overall accuracy of the model
adversely affected as shown by Pleiss [2017].

Relabelling. Some approaches exist for the post-processing
phase of relabelling. These show the probability of having a
positive decision as an outcome when this is altered by the
modification of the probabilities in the model[Calders and
Verwer, 2010; Kamiran et al., 2010]. Furthermore, recent
work shows an algorithm that targets samples with an individ-
ual bias for remediation in order to improve both individual
and group fairness metrics [Lohia et al., 2019].

Thresholding. This is a post-processing approach that de-
termines threshold values via measures such as equalised
odds for different protected groups. This ensures a balance
between true and false positive rates can be found, minimis-
ing the expected classifier loss [Woodworth et al., 2017]. The
fairness notions considered are independence and separation.

An evaluation of protected group thresholds exploiting
logistic regression was done by Menon [2018]. The au-
thors used fairness boundaries to illustrate the misalign-
ment between threshold values. Some alternative works pro-
pose other methods, like shifting decision boundaries using
post-processing regularisation [Kamiran and Calders, 2012;
Dwork et al., 2012]. Some other approaches learnt a thresh-
old value after training an ensemble of decoupled ensembles
such that the difference between protected and non-protected
groups is below some user-specified threshold [Woodworth et
al., 2017; Hardt et al., 2016; Menon and Williamson, 2018].
It is worth mentioning that thresholding methods claim fair
notions of equity when the threshold is correctly selected.

4 Discussion

4.1 Which Mechanisms and When?

Determining the right notion of fairness to be used must take
into account the proper legal, ethical, and social context. As
discussed in Section 2, different fairness notions exhibit dif-
ferent behaviour and must be executed in different phases.
For this reason, the mechanisms present specific advantages
and disadvantages.
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Pre-processing mechanisms can be used with any classifi-
cation algorithm, and this is an advantage. However, this may
hamper the explainability of the results. In addition, they are
not tailored to a specific classification algorithm and thus, the
accuracy obtained at the end of the process is uncertain. This
hampers the evaluation of the tradeoff fairness-accuracy.

Post-processing mechanisms can be used with any classifi-
cation algorithm (as in pre-process). However, applying them
in late-stage typically produces poorer results. It is more ap-
plicable to fully remove some kind of bias (as disparate im-
pact), but often the desired measure is not achieved and it can
deliberately damage accuracy for some individuals in order to
compensate others (also related to legal issues and economic
controversies in affirmative action). Post-process approaches
should require humans at the end of the loop (decision mak-
ers) managing information about the group to which individu-
als belong (usually unavailable due to legal/privacy reasons).

One of the main advantages of the in-process mechanisms
is the required trade-off between accuracy and fairness. It
can be clearly defined in the objective function. However,
mechanisms are tightly coupled with the algorithm itself.

Hence, the selection of the best phase in which to act has
dependencies with the data, the availability of the sensitive at-
tributes at testing time, and the fairness notion selected (since
some can only be applied in certain phases). Different al-
gorithms usually differ on the input requirements. Foremost
among these is the encoding of sensitive attributes, the sup-
port for multiple sensitive attributes, and the support for cate-
gorical attributes or the transformations required by the algo-
rithm. These context setups can vary between applications,
and related choices directly affect the accuracy and fairness
of a fairness-aware classifier. Finally, it should be considered
that often algorithms are fragile: they are sensitive to varia-
tions in the input.

4.2 Why Fairness in the AI Lifecycle?

The need of merging fairness in the AI lifecycle is to incor-
porate fairness needs into the software operations, making it
more sustainable from social and technical perspectives. The
more complexity is added to AI operations, the less sustain-
able and, in particular, fair they become. We aim to help de-
velopers in a practical manner. To provide an understanding
of the current fairness needs associated with each phase in
the AI lifecycle when operating ML software continuously.
Incorporating fairness seamlessly after the software is opera-
tional is in many cases unrealistic given this complexity. That
is why the mapping is a first step that can be used as a robust
pillar for stakeholders to tackle bias in a structured manner.

In addition, AI software is traditionally bespoke or domain-
driven, focusing on addressing specific problems to solve.
Thus, incorporating new components into the flow can be
perceived as a significant constraint. But, the need to give
a fair decision is directly related to the software’s sustainabil-
ity and, therefore, it becomes necessary. This work shows the
first steps towards a methodological approach between soft-
ware operations and a social contract underlying those oper-
ations. This will ensure continuity and fairness in the soft-
ware’s decision-making process.

4.3 Conclusions. Gaps and Challenges.

There are several challenges associated with the incorpora-
tion of fairness into the AI lifecycle. First, there is an ed-
ucational aspect of AI practitioners. Software professionals
must be able to create, maintain and continuously adapt their
software as part of their lifecycle. Developers can perceive
fairness as a burden for the processes, in spite of the heavy
impact that bias can have on the business outcomes, mainly
in reputation.

Furthermore, a second aspect is the lack of a methodolog-
ical approach to tackle fairness in the different stages of the
AI lifecycle. Although there are schemes well-defined for the
production of AI systems, AI is frequently focused on ad-
dressing specific problems, and there is no methodology for
incorporating fairness into the AI lifecycle. This is a major
challenge for developers to understand the actions to be taken
on each phase – data, model, development, operations – or,
more important, the responsible to execute these, which, fre-
quently, is assigned to different persons or even companies.

From a technical perspective, diversification is needed be-
yond existing algorithms and datasets. Literature focuses on
supervised learning with an emphasis on binary classifica-
tion. Furthermore, realistic and representative datasets must
improve and new techniques are needed on the full set of fea-
tures to avoid stability issues. In addition, interpretable and
transparent approaches are required. The ability of humans
to read the outcomes and understand the fairness process is
key to building the trust of users in AI and, in some domains,
it is enforced by law. Causality-based approaches provide a
better understanding of the unfairness roots, improving ex-
plainability and the selection of measures and mechanisms.

Fairness metrics need to be balanced between individual
and group notions of fairness by the model optimisations.
Existing works are mainly focused on group fairness with re-
spect to independence metrics due to: low development ef-
fort, low computational costs, and/or easing users’ fairness
understanding. More effort is required to strengthen existing
metrics but also to research the development of new ones if
necessary.

Experimentation environments are required to provide an
easy playground to test different notions and techniques,
comparing the results and having a better awareness of bias
implications.

This work aims to put the first steps towards facilitating de-
velopers’ seamless understanding of how to incorporate fair-
ness into operations, however, incorporating additional pro-
cesses can be challenging. To conclude, it is needed the de-
velopment of fairer algorithms but most importantly the de-
sign of procedures to reduce biases in the data, for instance
integrating humans and algorithms in the decision workflow.
However, thus far, it seems that biased algorithms are easier
to fix than biased humans or procedures.
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